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I construct a general model which neither postulates decisions are always optimal, nor that

decicion errors necsscarilv arice when ‘real world® acente are involvad Navarthalece I chaw that

agents always have a positive marginal incentive to use some information imperfectly, but never
to use all potential mfomauonevennflheyhaveeosﬂmmtopeﬁcumfomnonahout
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internally consistent without simply postulating the extreme limit of perfect decisions, it must
explicitly incorporate the effects of both information and decision errors ¢:: behavior.

1. Intreduction

Conventional choice theorv assumes acents rasnond to information
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perfectly in the sense of always making decisions that maximize expected
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utlllty based on their observed mformatlon. Opposing this view has been the
persistent criticism that ‘real world’ agents have severe limitations in their
ability to process information, which thereby prevents them from perfectly
using information without error. This criticism is sometimes avoided by
assuming decisions are adjusted to incorporate various ‘transaction cosis’ of
observing and processing information. Such cosi-adjusted decisions can
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Thus, the tendencv has hean to assert two gnnosite views: one which
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redefines optimizing so as to guarantee it will be satisfied; and one that

regards imperfect decisions as the only plausibic case for agents in the real
world As such, neither view allows the DOSSlblllty of using information
imperfectly itself to be analyzed.

Suppose, then, we investigate the case where agents can optimally use
some but not necessarily all information potentially relevant to their decision
probiems. In this more general setiing, I show there always exists a positive
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marginal incentive to use at least some information agents cannot respond to
optimally. Consequently, the question of whether imperfect decisions applies
in particular situations is not a matter of modeling discretion or convenience.
Rather, it is one of generic necessity once the possibility of decision errors is
permitted into the analysis; that is, once such errors are not excluded by
hypothesis. This conclusion is developed in four steps.

Section 2 shows how to theoretically distinguish imperfect information
from using it imperfectly, and develops a two-stage ‘reliability’ ratio which
allows the interaction between these two sources of error to be explicitly
modeled. Section 3 shows how this gives rise to a trade-off whereby more
information better predicts the consequences of agents’ decisions, but beyond
a certain point using better information also produces increasing numbers of
decision errors. Section 4 then presents a general result showing there always
exists positive marginal benefits from using information beyond the threshold
where decision errors begin (into the ‘Imperfect Decision zone’ or ID-zone).

On the other hand, agents are still guaranteed not to benefit from using all
information even though it may be costlessly observable and in the limit
perfectly predicts the consequences of their decisions. Imperfect agents can
thus always benefit from going partially but ncver fully into the ID-zone.
This result is also robust to introducing decision costs of reducing the
incidence of decision errors. Such costs might result from enlarging memory,
better sensory discrimination, increased computation speed, and so on. So
long as these costs are not increased to the limit where decision errors are
completely eliminated (so that the ID-zone vanishes) the above results still
hold.

Given these results, section 5 asks how far different kinds of agents can
potentially benefit from proceeding further into the ID-zone. As agents
become more competent at using information they may benefit from
proceeding further into the ID-zone. Conversely, less competent agents may
only benefit from entering less into the ID-zone; that is, from restricting their
use of information closer to the threshold where decision errors begin. Thus,
relatively more competent agents may benefit from using larger amounts of
more sophisticated information, but they may also use more than a negligible
fraction of such information imperfectly. This means that more competent
agents (such as humans compared to animalsj are not necessarily those who
will better approximate the behavior of optimal Bayesian decision makers.

2. Imperfect information versus asing it imperfectly

The first objective is to distinguish imperfect information from using it
imperfectly, where the former case kas already been thoroughly analyzed in
standard choice theory. To do so let the sets S, X, A denote respectively:
possible states of the world, information about the true state of the world,
and agents’ repertoire of choosable actions. For each action ae A4, let S¥
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denote those states for which action a is the best choice. That is, action a
maximizes utility contingent on those states actually occurring. As a very
simple example, suppose action a means bringing an umbrella. S* would
then comprise all those states of the weather where enough rain falls to make
doing so preferred over not carrying an umbrella. Similar examples apply to
any particular decision problem, such as when to adjust production or
employment in response to underlying changes in relative prices, or when to
enter into contractual commitments depending on a host of factors affecting
the future outcome of such agreements.

Next, suppose agents must rely on information that may imperfectly signal
which states will actually occur. Here also we can define X* as the set of
messages for which action g is the best choice; meaning those messages for
which action a maximizes expected utility knowing only the ‘posterior’
probabilities of different states arising contingent on receiving those mess-
ages. Thus for example, depending on how barometer readings are imper-
fectly correlated with actual precipitation, there exists a range of pressure
readings for which bringing an umbrella is preferred ex ante to not doing so,
even though in particular instances it may or may not rain ex post. Similarly,
observed prices may be a mixture of nominal price changes due to purely
monetary disturbances, and ‘genuine’ relative price changes due to underlying
‘real’ factors. Depending on how observed prices noisily reveal true relative
prices, there exist observed price changes for which adjusting production or
consumption decisions is preferred to not doing so.

Finally, let the correspondence B(x):X—+A represent a decision rule for
choosing actions in response to observed messages; meaning an agent’s
behavior in responding to information. The usual practice is to postulate an
optimal decision rule, denoted B*(x), which always maximizes expected
utility contingent on received information. That is, ae B*(x) if and only if
xe X} for all ac A.

With the above notation we can introduce certain reliability concepts.
First, consider the information potentially used by agents. Its reliability refers
to how well the optimal messages for selecting an action distinguish between
optimal and non-optimal states for selecting that actior. This is determined
by the following conditional message probabilities: r¥=p(X*|S¥) and w)=
0. ¢ :IS —S%. rX¥ is the chance of optimal messages Leing observed when
optimal states for selecting action a occur. Similarly, w¥ is the chance of
optimal messages being observed when non-optimal states for selecting
action a occur. The ratio pX=rX/wX thus measures the ability of messages
X* to correctly reveal the optimal states for choosing action a without
mistakenly arising under non-optimal states for choosing it.2 Perfect

2Using X to superscript rX,wX does not mean that the set of messages X is condigic‘)nal on
deciding to select any particular action a€ A (nor does X necessarily depend on the decision ruie
B(x) used by an agent). Regardless of whether X is determined prior or gqncurrently with
deciding how to react to particular messages xe X (or determining what decision rule B(x) to
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information means rX=1 and wX=0 for all g; so that pX =rX/w¥= 0 for all
a.

Now apply the concept of reliability directly to agents’ behavior in
responding to information. Namely, how likely are agents to choose actions
when optimal messages for doing so are observed without mistakenly
selecting them when non-optimal messages for doing so arise? This will in
general depend on the type of decision rule B(x) that governs agents’
behavior in responding to information. Thus, define the following conditional
response probabilities, where their dependence on B(x) is notationally
indicated by superscripting in the following manner: r?=p(aeB(x)| X?¥),
wl=p(aeB(x)| X — X?*), and pf=r2/wi. The ratio p} measures the reliability
of behavior at responding to the ‘right’ instead of the ‘wrong’ messages for
choosing an action a, analogous to how pY measures the reliability of
information at signaling the right instead of the wrong states for choosing
that action.? The limiting case of fully optimal decisions B*{x) corresponds

apply to potentially observed messages), the likelihood of rightly or wrongly selecting individual
actions may depend on the type of information used by agents (as discussed in section 3). Hence,
the explicit dependence indicated notationally by r*, wY and p¥ for each ac A.

3The explicit separation between information and decision reliability (pX and p? for ae 4) is
not present in standard decision theory. Yet it is a fruitful distinction nevertheless. With it, we
can distinguish between two basic sources of imperfection: from ‘without’ (or ‘external errors’)
due to imperfect information embodied in messages received by agents; and from ‘within’ (or
‘internal errors’) due to internal limitations in agents’ ability to assimilate and react appropria-
tely to incoming messages.

The ‘external’ versus ‘internal’ distinction can be interpreted in various ways, two of which are
especially relevant to standard decision theory. One is to view the information probabilities rX
and w} as purely subjective to an agent (as ‘subjective Bayesian probabilities’), embodying only
personal beliefs about the reliability of messages in guiding when to select differznt actions ac A.
The possibility of <1 and wZ>0 would then mean an internal inconsistency’ in properly
behaving in accordance with one’s subjective beliefs about information (i.c., an agent’s internal
inference forming and reaction mechanisms are imperfectly coordinated with other observation
and belief forming mechanisms). Alternatively, r¥ and wX could refer to objective statistical
properties produced through external environmental relationships; akin to recent ‘rational
expectations’ models. The probabilities 2 and w? could then incorporate the effects of decision
errors about how to correctly decide relative to objectively known statistical error rates of
received messages. Or we might mix objective and subjective error interpretations by having rX,
w) refer to objective statistical properties, while rP<1, w8>0 arises from agents forming
misiaken subjeciive beliefs about rX, wX,

Still another oossibility is that r? and w? measure an agent’s self-awareness of its own
imperfection in responding  information; where rf=1 and w8=0 for all a means an agent is
perfectly self-confident at mz ag all potential decisions. Imperfect seif-confidence (measured by
re<1 and wl>0 for differe... actions) can then be explicitly incorporated into the analysis
(thereby establishing a theoretical link to key areas of cognative psychology such as personality
conflict, self-disception, depression, motivation therapy, and so onj. Seif-confidence may also
affect aun agent’s willingness to take risks (that is, it may affect the degree of ‘risk aversion’ versus
‘risk loving’) with consequent effects on investment and entrepreneurial behavior. Whatever may
e the appropriaie interpretation in differen: anplications, the analytical objective is to model the
behavioral consequences acising from both external and internal sources of error (rather than
assuming agents behave as i only the former errors exist). Hence, the motivativn f5i an explicit
analytical distinction between r¥, w¥ and r%, w® for potentially chosen actions ae A.
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to rJ'=1 and wZ" =0, which implies xe X* if and only if xeB*(a).* In this
case agents are said to be ‘perfectly reliable’ at using informaticn; so that
p¥ =00 for all acA.

Next, consider the joint interaction between imperfect information
(03 < 0) and using it imperfectly (pf < c0). Let r¥®=p(ae B(x) | S¥) denote the
likelihood of selecting an action @ when optimal states for doing so actually
arise. Note that this implicitly depends on how agents imperfectly respond to
information and on how information is imperfectly correlated with particular
states. Similarly, let w¥?=(ae B(x)|S—S¥) denote the likelihood of choosing
an action a when non-optimal states for doing so actually arise. The ratio
p¥8=rXB/wX® then measures the relative likelihood of selecting an action
under optimal instead of non-optimal states for doing so, as joinily affected
by imperfect information and using it imperfectly. It can be decomposed into
the following general foriiula (scc part D of the appendix):

Theorem 1. (The Structure of Joint Reliability)

XB __ rf(p,,"—l)+l

=2 i A. 1
it 7 e B 0

Formula (1) implies a direct trade-off between the reliability of information
and agents’ reliability at using it: less reliable use of information will reduce
their joint reliability at choosing an action in response to any potential
information source. To see this, note that as pZ—1, both the numerator and
denominator of pX® necessarily also approach 1 regardless of how close wX
and rX might approach 0 and 1 respectively; that is, regardless of how large
pX might be. In addition, as long as messages have at least a 50-50 chance of
correctly signaling when to select an action, so that pX=1, then joint
reliability pX? necessarily falls below pX as pP drops below infinity.s Thus,
imperfectly using information necessarily reduces agents’ joint reliability below
that of any partially informative information source, eventually to the point
where they have only a 50-50 chance of choosing actions when optimal instead
of nonoptimal to do so. The latter result holds no matter how reliable
information might be on its own.

4If xe X* and rP=p(ac B(x)| X¥) =1, then ae B(a) must hold.

Conversely, if xeX—X?* and wl=plaeB(x)| X —X2)=0, then x#5{x) must hold. Hence,
r®=1 and w?=0 imply xe X* if and only if aeB(x) (or equivalently, ae B(x) if and only if
ae B*(x); since ae B¥(x) by definition if and only if xe X¥). ‘

5Substitute formula (1) into the inequality X< o =r¥/w], and cross multipiy the numerators
and denominators assuming that pf is finite. After cancelling common terms and rearranging the
inequality reduces to simply i Sr, /-:,’,' m,;,’,’. Thius, if p2< o, then 15pY is the only requirement
needed for the original inequality pX? < p¥ to hold.
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Besides the above properties, another reason for analyzing joint reliability
ratios pXB is their relationship to the expected utility achieved from selecting
different actions in response to observed information.¢ Let EU(A|X) denote
the expected utility from selecting actions ac A4 in response to observed
messages x€X. If joint reliability is rising simultaneously for all actions,
meaning pX® is increasing for all ac 4, then EU(A|X) will also rise (see the
part H of the Appendix). For example, suppose messages more reliably
indicate when to select every action, so that p} increases for all aeA. In
addition, suppose agents decide at least as reliably as before, so that pf does
not fall for any ae A. Then the expected utility over all decisions based on
such improved information EU(A | X) will necessarily also rise.

Note, however, that rising EU(4|X) does not by itself incorporate any
potential costs of acquiring or observing better information. Consequently,
EU(A]X) measures only the expected gain or ‘marginal benefit’ from using
better information. As discussed below, the objective is to determine when
the marginal benefit from using better information is positive or negative.
Doing so will thereby determine whether there is a positive or negative
incentive to use or search for more information. This type of result can be
obtained without trying to formulate a second or third stage ‘meta-
optimization’ problem where agents try to jointly determine how to react to
observed information, along with determining the optimal amount of infor-
mation to observe and the optimal level of search and observation costs.

The reason for not formulating such a multistage optimization problem is
that doing so introduces additional search and observation dimensions
whios2 associated costs and benefits further expand the number of optimizing
margins beyond those aiready present in trying to respond optimally to any
given information set. Thus, adding additional search and information cost
margins even further increases the complexity of the resuliing multi-level
decision problem compared to ignoring them. Consequently, the frequency of
decision errors may even further increase if imperfect agents try to solve such a
multi-level optimization problem.’

6See footnote 11.

This is an instance of a general problem whereby adding addiiional levels of costs and
benefits of calculating previously included optimizing margins produces an infinite regress to
higher ‘meta’ decision levels. The reason for such an infinite regress is that comparing costs
versus benefits of eliminating decision errors for each next decision level further expands the
number of optimizing margins agents must attempt to keep track of compared to those present
before decision errors were considered in the first placc. Thus, the complexity of agents’ expanded
decision problem increases relative to whatever decision skills were originally &t their command
before additional opti:nal decision-error margins were introduced. Consequently, additional
decision errors will arise with each new decision error optimizing margin, instead of eventually
converging to zero when enough such cost-benefit margins are introduced (that is, decision costs
bring with them more optimizing margins and tkus more potential decision errors in trying to
control them).

The latter conclusion means that no matter how many types of decision processing or
information costs are introduced (with their associated optimizing margins) still further decision
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We can avoid these problems by focusing instead on a more basic
question; namely, when will positive marginal benefits to using more infor-
mation exist, thereby creating a positive incentive for responding to more
information? This question can be analyzed without assuming imperfect
agents somehow behave as if they solved an even more complicated multi-
level decision problem than that which they were already unable to solve
before introducing further optimizing margins in the first place.

3. Better information versus more decision errors: A basic trade-off

As discussed in the introduction, suppose agents can perfectly use some
but not all potentially available information. Before proceeding to the main
results, three interpretations of this general possibility are briefly described
and then formalized with the reliability concepts introduuced above.

3.1. Finite channel capacity

One of the basic results of information and cybernetic theory concerns
transmitting information through an imperfect channel which tends to garble
information. It is possible to encode any set of messages so as to reduce
transmission errors arbitrarily close to zero up to the channel’s capacity to
transmit information. Beyond this limit, errors will necessarily risc no matter
how messages are transmitted [see Theorem 11 of Shannon and Weaver
(1963)]. Suppose agents’ decision processes represent an information channel
of finite capacity which attemps to transform messsages into optimally
selected actions. That is, agents use messages as ‘inputs’ to generate ‘outputs’
in the form of actions which are perfectly correlated witi: the optimai
messages X? for selecting them; so that r2=1, wB=0 and p2= oo for all ae 4
{(see parts E and F of the appendix for a brief formal statement). The above
theorem means that agents may be able to perfectly use information up to a
certain amount of messages received as input. However, beyond this point,
responding to still further messages will produce decision errors which reduce
r2 below one and raise w? above zero. This in turn implies that the reliability
ratios p2 for selecting different actions now drop below their upper limit of
infinity and continue to fall as more information is used.

3.2. Information complexity

Besides the amount of information agents use as input, they may also have
limited skills at interpreting or discriminating between certain kinds of

errors will remain whose behavioral consequences can be explicitly studied. Accordingly, this
paper focuses on a key aspect of studying impetfect choice, rather than assuming agents behave
optimally relative to some higher level decision problem. Further discussion of these issues is
contained in Heiner (1983, pp. 569-70; 1985, pp. 91-92; 1987c, pp. 6-7, 16-17).
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massages. In pacticuiar, what kind of information is needed to predict a
subtle, continually changing environment? It cannot be tracked by a simple
binary message such as on-off, black-white, and so on. More complex
compound messages can by built up from simpler messages, but then agents
may have to distinguish between a very large number of possible compound
signals that can arise through different, possibly subtly differentiated, patterns
of simpler components. Thus, in order for messages to better predict
environmental changes, they may themselves become more complex and
thereby more difficult for agents to interpret correctly (for a formal
development using concepts from information theory, see part G of the
appendix). Consequently, as messages become sufficiently compiex, agents
can no longer interpret them without error. In terms of the reliability ratios
p¥ and p5, this means that in order for information to become more reliable
its own complexity may increase and thereby at some point reduce agents’
reliability at u:ing it. Consequently, as the information reliability ratios p} rise
above some threshold, the corresponding decision reliability ratios p2 drop
below infinity and continue to fall thereafter.

3.3. Nonlocal information

Suppose agents have some ability to learn from their prior experience in
responding to information. For example, their reliability at using messages
improves through repeated use and exposure t¢ them. Agent’s past exper-
ience will then have a biasing effect on their ability to use information even
when processing a fixed amount of information, or the messages involved are
of equal complexity. This is a special case of a general principle whereby
agents’ reliability at using information, measured by the ratios p? for ae 4,
will at some point drop as it becomes sufficiently ‘non-local’ in some
dimensicn from the recurrent features of their ongoing experience® [see
Heiner (1985c, also 1986b, 1987a)]. For example, individual agents may have
frequent dealings in only a few markets within a larger economic system.
Consequently, as various transaction messages (such as market prices and
quantities) expand beyond these ‘familiar’ markets, agents may at some point
become less and less reliable at using them. On the other hand, such an
expanding set of transaction messages X, if correctly interpreted, will better
predict market conditions over the whole economy. Thus, at some point

8Differential sensitivity to information depending on prior exposure or similarity to other
familiar messages is the focus of several literatures in experimental psychology and animal
bekavior. See for exarnpie the studics of ‘exposure effects’ in R. Zajonc (1968, 1980), and J.
Seamon, N. Brody and D. Kauff (1983); the studies of ‘perceptual set and expectancy effects’ in
U. Neisser (1976); and studies of ‘search images’ and ‘generalization gradients’ by D. McFarland
(1935) and N.J. Me-%:atosh (1974). Closely related to these studies is the work of Richard Day
on adaptive dynamic search behavior; such as Day (1984) and the references cited therein. Local
dynamic seaich also plays a key role in the ‘satisficing’ theories of Herbert Simon (1957, 1983),
and in Richard Nelson and Sidney Winiers 1982 book on evolutionary economic change.
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expanding X will both further raise pX for particular actions, while also
causing p? to drop below infinity and coztinue falling?

Let us now formalize the above three examples. The va:iable z is used io
index changes in the set of information X, or in the type of individual
messages contained in X. Thus, larger values of z could measure; the amount
of information agents process as input; the complexity of received messages;
or the degree of familiarity or non-localness of these messages. Note that
expanding X may involve changes in all three factors. That is, larger X may
increase the number of messages for agents to process, which may themselves
be more complex or less familiar than previously included messages. The
conditional probabilities rX, wX, 2, w® for ae 4 are assumed differentiable
functions of z. Derivatives with respeci to z are denoied wiih a doi above ihe
correspending variable, and z ranges over the interval [z, o0].

The probabilities 7Y, wX start off initially equal at z. This corresponds to
uniformative messages which arise with equal chance whether optimai states
for selecting an action arise or not (so that pX(Z)=1). The reliability of
information also rises monotonically with z toward infinity. That is, the
derivatives of r} and w) satisfy rX>0, wX<0 for all 223, and r¥—1, w¥—=0
as z—oo. This implies p¥>0 for all z=2, and p¥— o0 as z—o0. Thus, for
each action a4, p{ starts off at one and rises strictly toward infinity as z
increases. On the other hand, agents start off perfectly vsing information as z
increases up io an ‘error threshold’, denoted z° where decision errors begin
to occur and thereafter accumulate for larger values of z. That is, r3(z)=1,
w2(2) =0 for all actions ae 4 and 2<2<2°.

However, beyond z° there is at least one action, denoted a° for which
r%(z) <0 and vw2(z)>0 for all z>z° If this happens at z° for more than one
action simuitaneously, then action a® can be arbitrarily selected from among
this group. As z rises further beyond z°, decision errors will begin accumulat-
ing for successively more actions, until eventually #2<0 and w2>0 for aii
a€ A. This implies agents’ reliability at using information p2 remains infinite
for all actions in 4 until z reaches z° Thereafter, the decision reliability
ratios for different actions successively drop below infinity, beginning with
p% which starts dropping at z°.

Next consider the information reliability ratio for action a°, pl. Since pX
rises monotonically with z, we can also define the error threshold as that
point where pX(z) rises to pX(z°); denoted p°=pX(z°. In the discussion that
follows it will be convenient to divide the range of gX(z) into two intervale:
the closed interval [1,p°] where no decision errors occur as information
becomes more reliable; and the open interval (p° co) where decision errors
accumaulate for different actions as p% rises further beyond p°.

The general picture is thus one of increasingly reliable information which

9For an application of these concepts to rational expcctation models of the business cycle, sec
Heiner (1986a).
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at some point becomes too difficult for agents to use without error, thereafter
steadily lowering their reliability at using it to select particular actions ae A.
The initial phase before decision errors begin is calied the Perfect Decision
zone, or PD-zone. The second phase where decision errors accumulate is
called the Imperfect Decision zone, or ID-zone.

4. The necessity of imperfect decisions

As discussed in the introduction, we could eliminate the ID-zone by
assuming it doesn’t exist; that is, by postulating agents always optimally use
any amount or type of information. Alternatively, we could assume it is
prohibitively ccstly to observe any information in the ID-zone. Thus, in
order to analyze the possibility of using imperfect information, assume agents
have acccss to a range of costlessly observible information sources for which
an ID-zone exists as described above.

Recall from section 2 that agents’ joint reliability pX? equals the reliability
of information pX if they perfectly use it, but falls below pJ if any decision
errors occur. That is pXP=pX% when pS%=o0, but p¥P<pX% when p%h<oo,
dropping to one as pZ drops to one. Fig. 1 depicts these relationships by
graphing both pXP(z) and pX(z) as z varies above its lower limit Z. This
produces a path which simultaneously shows how pX# and pX vary relative
to each other as pX ranges over the lower axis between one and infinity. Up
to the error threshold p°, pX? and p% equal each other and thus rise together
along the 45° line. Thereafter pXP falls below pX% for pX>p° The same
qualitative relationship holds for any other action a€ A; except that the point
where pX2(z) falls below pX(z) may occur ai values of pX(z) that exceed
p° = po(2°).

The curve graphed in fig. 1 also has a unimodal or ‘single peaked’ shape.
This property does not automatically hold without further assumptions
which are developed in part C of the appendix. Briefly, sufficient conditions
are: (1) that ¥ and wX shift respectively up and down toward 1 and 0 at
decelerating rates, meaning /X <0 and WX <0 (where double dots 5§ mean
second derivatives with respect to z); (2) the absolute percentage drop in wX
toward zero does not exceed the absolute percentage increase in r¥ toward
one, meaning |wX/wX|<|fX/rX|; and (3) the negative percentage change in the
derivative of decision reliability p? does not exceed twice the absolute
percentage change in (p? — 1), meaning |52/68| <|262/(p2 - 1)).

Now consider how much information imperfect agents potentially may
benefit from using. In particular, will they benefit from using information
beyond the threshold where decision errors begin to occur? I will not answer
this question by formulating a multi-level decision problem simultaneously
determining different information <ets X, and their associated observation
costs along with the decision rule B(x) for reacting to messages in X. As
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X8
P a°

X8 X
Pao =Py

PD-zone ID-zone

Pa°

1 p°
Error Threshold

Fig. 1. Agents’ joint reliability pX° mmally equals the reliability of information p% because they

optimally respond to messages (that is, p,o-oo) up to the error threshold p°. Beyond p° they

begin to make decision errors (so that p% is now finite and falling), which causes pX” to steadity

drop below pX; eventually not only relative to p,’,‘a but also absolutely down toward one. As
shown, pXP always reaches a maximum for some finite p% > p°.

already discussed in section 3, imperfect agents are even less able to solve
such a multi-level problem than the initial problem of how to respond to any
given information set. However, we can precisely analyze whether there exists
a positive marginal benefit to using information beyond the decision error
threshold represented by p° in fig. 1. Deing so will establish whether there
exists a positive incentive for agents to use at least some information
imperfectly. As will be shown, the answer to this question is necessarily yes
(under certain regularity conditions about decision errors ‘smoothly’
beginning).

One reason for posing this question is a methodological one about the
usual modeling assumptions of statistical decision theory. Namely, a generic
‘yes' answer means it is illegitimate to assume statistical decisions are always
optimal (corresponding to p2=o0 for all ae A) once the possibiility of decision
errors is not excluded by hypothesis, even assuming agents have costless access
to a range of information sources which they can use perfectly. Despite the
option of using only the latter information, imperfect agents will always have
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a positive marginal inceniive io use information beyond the point where
decision errors never occur, that is, beyond the point where the usual
assumption of optimal decisions is satisfied. Consequently, we now have a
basic theoretical reason for explicitly analyzing the behavioral effects of
imperfect decisions, rather than assuming agents always respond to inior-
mation perfectly.

Such a theoretical justification further supports a general theme I have
elsewhere introduced [Heiner (1983, 1985c, 1986b, 1987b)] about predictable
behavior arising from imperfect choice. The reason is that decision errors
create potential benefits from controlling them successfully. Such errors thereby
produce systematic incentives toward controlling decisions with rules and
procedures that discipline behavior into relatively more predictable patterns
than would otherwise result if there were no decision errors to potentially
regulate in the first place. Consequently, analyzing the effects of decision
errors becomes a powerful new explanatory source for predicting behavior; one
that cannot be used so long as we continue to postulate that decisions are
always optimal. Hence, the motivation for showing in this paper a further
theoretical justification for analyzing imperfect decisions.

In order to iituitively understand this justification, consider the qualitative
relationship between pX? and p% shown in fig. 1. Note that up to the error
threshold p° p2P rises one-to-one with pl; where the same relationship nolds
for any other ae A, since pZ=o0 for all aec A up to p°. Thus, ai ilic error
threshoid p° either the joint reliability ratios pX® will continue to rise
one-to-one if p¥=o00 continues to hold, or they will begin dropping below
their respective information reliability ratios pX if their decision reliability
ratios pS drop below infinity beyond p°. pX? is either the first or among the
first joint ratios for which this happens.

These relationships imply that at p° the joint reliability of selecting all
actions will continue to rise unless one or more of the latter ratios such as pXP
immediately switches from rising one-to-one to strictly falling just as the error
threshold is reached. This can happen only if the denominator w2 of one of
the latter ratios has a discontinuous derivative that instantly jumps from zero
to a strictly positive level. Hence, so long as decision errors ‘smoothly’ begin
for all actions, there will exist a positive marginal incentive to using
information beyond the error threshold p°.

On the other hand, the previously discussed properties of the pX® ratios
also guarantee they will all eventually fall toward one as more information is
used, since p3?—1 as p8—1 for all ae 4. Consequently, the marginal benefits
from using more information to guide selections of different actions will
eventually become negative for all ae 4. We therefore have the following
general result (proven in part A of the appendix):

Theorem 2. (The Necessity of Imperfect Decisions)
(@) Let a® be any action for vhich pl starts dropping below infinity at p°,
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and let the derivatives i3, i, Wk have finite right hand limits at p°. Then the
joini reliability p}? will immediately begin dropping at the error threshold p°
only if W instantly jumps from zero to a strictly positive level given by the
inequality,

where ° denotes the right hand derivative as z approaches z° from above
(corresponding to p) approaching p° from above in fig. 1).

(b) The above inequality implies that if wD is continuously differentiable at
p°, so that W ‘smoothly’ rises from zero at p°, then the joint reliability ratios
of all actions will continue rising beyond ike error ihireshoid p°. Consequently,
so long as decision errors ‘smoothly’ begin, there always exists a positive
marginal benefit from using information strictly into the imperfect decision or
ID-zone.

() Moreover, the join: reliability ratios pX® for all actions in A will
eventually reach finite maximums and thereafier drop monotonicallv to one.
Consequently, the margina! benefit from using more information will aiways fall
below zero before agents reach the limit of using perfectly reliable information.
That is, positive marginal benefits from using more reliable information will
continue ai most partially into the ID-zone even though information eventually
becomes perfectly reliable, and even if all potentiaily usable information is
costless to observe.

As discussed above, Theorem 2 implies that once we extend standard
choice theory to allow the possibility of decision errors, agents will in general
not limit their use of information so as to behave as previously assumed. It
should also be emphasized that this basic conclusion still applies even if we
allow agents the opportunity of using resources to improve their information
processing skills; such as enlarging memory capacity, better sensory discrimi-
nation, faster and more accurate computations, and so on. In particular, let
C; be the sum of decision costs associated with such improved skills. C, does
not refer to costs of searching for more information, but rather to costs of
correctly interpreting and reacting to information once it has been observed.
Assume higher C; has the mutual effect of delaying the error threshold p°
and reducing the rate of decision errors beyond p° This will shift the
relaticnship between pX? and pX shown in fig. 1; with similar shifts applying
to other actions in A. Three such relationships for successively higher values
of C, are shown in fig. 2. Higher decision costs reduce the ID-zone by raising
the error threshold p° But so long as it doesn’t vanish, Theorem 2 still
guarantees agents will have a positive marginal incentive to imperfectly use
some but not all potential information.
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Fig. 2. Higher dccision costs C,; improve agents’ competence at using larger amounts of more
complex and non-local informatior., thereby delaying the error threshold p° and slowing the
drop in joint reliability pX¥ below p after p° is reached. Three curves depicting this pattern are
shown for successively higher C,<C,<C,. Note how each curve peaks further beyond its
corresponding error threshold as C, increases.

5. Agents of differing competence

The curves shown in fig. 2 can be interpreted not only as a single agent
using resources to improve its decision skills, but also as distinct agents with
different levels of decision costs embodied in more efficient decision mecha-
nisms. This might involve ‘hardwired’ differences in neurological design such
as between different biological species, or ‘software’ differences in message
processing or interpretation methods learned through ongcing experience.
Whatever the interpretation, fig. 2 illustrates a general principle: more
competent agents will have a positive margina! benefit from using inforinaiion
relatively further into the ID-zone than less competent agents. The reason is
that as agents become better at using information, they can respond tc inore
complex and finely differentiated messages before mistakes in selecting
particular actions start to occur, while also reducing the frequency of such
errors as still further information is used. That is, the threshold p° increases,
and pX® drops below p¥ more slowly beyond p° than before, for any ae A (see
part C of the appendix for a precise statement). On the other hand, as agents
vecome less competent, decision errors begin sooner and more quickly
accumulate as further information is used.
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Think of the above also in terms of the common belief that agents with
better decision skils will more closely app.oximate optimai Bayesian
decision makers. This view is only partially correct. Better decision skills will
delay the error threshold, but aiso enable agents to benefit from going
further beyond it. Consequently, more skillful agents may end up using more
information, but a larger fraction of that information is used imperfectly
compared to less competent agents who respond to less information, but also
use relatively more of it without error. Thus, at one eitreme we may have
highly sophisticated agents responding to a large number of complex
messages, a substantial proportion of which are used imperfectly. On the
other hand, a very simple agent might respond only to a relatively small
number of crude but easily interpreted messages, vu'tually all of which are
used perfectly.

The latter possibility fits a number of well-known cases of releasing
behavior in animals. This usually consists of simple messages (involving color,
shape, movement and so on) triggering certain responses independent of
other much more informstive, but also more complicated messages. For
example, consider the following summary of Niho Tinbergen’s studies of
fighting behavior between male stickleback fish [Keeten (1976, page 504; for
other examples see also pages 502-506, 496-498)].

In the spring the throat and beily of the males become intensely red
[suggesting] that the red color was an important stimulus. The investi-
gators presented their subjects with a series of models, - “me quite like
actual male sticklebacks except that they lacked the red cosoration, and
some showing little resemblance to actual sticklebacks except that they
were red on the lower surface. The ma'e fish attacked the red-bellied
models, despite their unfishlike appearance, much more vigorously than
they did the fishlike ones that lacked red. Surely the sticklebacks could
see the other characteristics of the models, but they reacted essentiaily
only to the releasing stimuli from the red belly.

The above example is only one out of a number of possibilities as we
proceed across different species. In particular, the higher primates (especially
humans) will typically not benefit from being so severely restricted in using
information. Instead, they may benefit from using not onmly richer, more
sophisticated messages, but also from information ‘sensitivity’ possibly well
beyond the error threshold which defines the boundary of the ID-zone. This
may in fact be the generic case when humans are involved.

6. Conclusion

I have constructed a model which neither postulates decisions are always
optimal, nor that decision errors are the only plausible case when ‘real world’
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agents are involved. Instead, agents have access to a set of available
information, only part of which they can respond to perfectly. As the amount
of information they use to guide their decisicns increases sufficiently, or the
messages involved become sufficiently complex or noniocal to their ongoing
experience, eventually a threshold is reached where decision err irs segin and
further accumulate thereafter. Information beyond this threshold is thus
called the Imperfect Decision or ID-zone.

So long as the ID-zone exists and decision errors smoothly begin at its
threshold, imperfect agents will always have a positive marginal benefit from
continuing partially but never completely intc the ID-zone. The latter result
implies imperfect agents with not benefit from using all information. Mor-
eover, this conclusion holds even if the ID-zone in the limit contains perfect
information about how to select every action, and even if all potentially
available information is costless to observe. The generic case for imperfect
agents is thus to use information somewhere into the interior of the ID-zone.
In addition, as agents become more competent at using information, they
may benefit from proceeding relatively further beyond the error threshold.

The above results provide a basic theoretical justification for investigating
the behavioral effects of imperfect decisions. Namely, once the possibility of
decision errors is not excluded by hypothesis, there always exists a positive
marginal incentive to using information beyond the point where it is legitimate
to assume optimal decisions. Thus, in order for a decision problem to be
internally consistent without simply postulating the extreme limit of perfect
decisions, it must explicitly incorporate the effects of both information and
decision errors on behavior.

Appendix

A. Proof of Theorem 2
Start from a value of z greater than z° so that p% is finite, and differentiate
the formula for p} given in eq. (1). To simplify calculations, let r%=A4,

wh=B, rh=r, wh=w, p=r/w, rXB/wXB=y. .
These definitions imply y=(A4(p— 1)+ 1)/(B(p— 1)+ 1), from which we then
have,
7<0=[B(p—1)+11[4p+ A(p—1)]-[A(p—1)+1][Bp+ B(p—1)]<0
=AB(p—1)p+AB(p—1)*+Ap+ A(p—1)— AB(p—1)p— AB(p— 1)?

—Bp—B(p—1)<0
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=>(p—1)(AB— AB)+ j(A—B)+(p—1)(A—B) <0

= p(4--B)Z(p— D45~ A&+ (- (4B} (A1)
—p _AB—AB+(A-B)/(p—-1
L b Al (A-B)o—1) A2
(p—-1) A-B
In addition, the left-hand side of (A.2) expands as follows,
—p _—(wi—rw)/[(r 2__ —wr+rw
7| a— / (w l) == (A3)

Then take the limit of (A.2) and (A.3) as z approaches z° from above (which
corresponds to the right-hand derivative denoted with a © in Theorem 2).
Recall that doing so implies r—1, w—0, and p=r/w—00. Recall also that 4
and B are probabilities bounded between one and zero, and that the right
hand limits of their derivatives A and B converge to finite limits, denoted A
and B. ponsequently, as z—z° the right-hand side of (A.2) reduces io
(AB— AB)/(A— B). This expression is positive since 4>0 and B<0 for all
z27 by hypothesis, which in turn implies A—B>-0 at z° since A=B at
Z<z% Since the right hand limit of # is also finite (and since r and w also
approach 1 and zero respectively), then (A.3) reduces to the right hand limit
of w, denoted W, as z—2° Thus, substituting the last two results into (A.2)
establishes part (a) of the theorem.

Part (a) implies that for any action a such that w,>0 for z>Z, its joint
reliability pX® will still strictly rise at z° if w, is continuous at z° (so that the
inequality derived for part (a) fails to hold). Since the joint reliability ratios
of other actions are still rising cne-to-one with pX, then part {a) implies the
joint ratios of all actions continue to rise beyond the error threshold 2° (or
p°=pX%(z° in fig. 1). Hence, the expected utility from selecting actions in
response to observed messages must still be rising as z increases beyond 2°
(ie., there is still a positive marginal benefit from using information beyond
the decision error threshold z° see part H of the appendix below), which is
the desired result for part (b) of Theorem 2.

To prove part (c), recall that for all ae 4, pX® necessarily drops o one as
pB drops to one (where the latter happens as z—oo). Thus, for all ae 4, p3°®
must eventually reach a maximum for some finite 2>2% This result
combined with the result of section B of the appendix (that each p}® has a
single peaked shape that strictly falls once the pcak is reached) together
imply that the joint reliability of all actions is falling for z>Z Hence, the
marginal benefit from using more information is negative for z>Z.
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B. Single peakedness of pX®

To estzhlish conditions implying that joint reliability is single peaked, let a
be an arbitrarily selected action from A4 (so that y of part A above now
equals p,,‘) and recall that the sign of § is determined by the sign of the
expression in (A.1). Rearranging this implies § <0 if the following inequality
holds,

Aﬁ+fi(p-l)>A(p—l)+1_
Bp+B(p—1)" Blp—-1)+1

(A4)

Let z* denote the value of z where y reaches its first local maximum
(vkich must exist since part (b) of Theorem 1 implies y rises above one as z
exceeds z% yet y eventually drops back to one as z—o0); that is, j(z)>0 for
all z<z* and 7(z*)=0. Now suppose the left side of (A.4) is rising at z}, so
that the inequality of (A.4) will start being satisfied immediately after z
increases beyond z* (since this implies the right side of (A.4), y, will also
immediately start dropping). In the same way, if the left side of (A4)
continues to rise then its right side, y, will continue falling; so that the left
side exceeds the right side by an ever increasing margin. Consequently, a
sufficient condition for y to strictly fall after it first stops rising (<0 for all
z>z§) is that the left side of (A.4) have a strictly positive derivative for all
z2z.

To see what this entails, differentiate the left side of A.4 (hereafter denoted
LAd), where its sign is determined by the sign of the numerator of the
resulting ratio expression. Thus, the numerator must be positive for LA4’s
derivative to be positive. By cancelling and rearranging terms, we obtain the
following inequality for the numerator of LA4’s derivative.

(262 —(p—1)p)(AB— AB)+ p(p— 1)(AB— AB)+(p— 1)X(AB—- AB)>0. (A.5)

First consider the second multiple of (A.S), p(p—1)(AB—AB). If A and B
rise and drop at decellerating rates to their respective limits of 1 and 0
(meaning 4 <0 and B>0) then AB— AB <0 must hold. Thus let us require,

A<0 and B>0 for all z22° (A.6)

Al

Also, since p<0 and p>1 for all z> 2% and since p(z°) = o0, then p must be
strictly falling from above to its lower bound of one (so that p>1 for ali
z22%. Consequently, plp— 1)<0 for all z22°% By combining the above
results we have j(p— l)(AB AB)>0

In similar fashion consider the third multiple of (A.5) for whom a
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nonnegative sign requires AB— AB20 for 22 z°. This will hold if and only if,
Al _|B
e 3 220 .
lAl_IB] for z=Z (A7)

This means that the absolute percentage rate of decrease in B toward 0 must
not exceed the absolute percentage rate of increase in A toward 1.

Finally, consider the first term in (A.5). The expression AB— AB is strictly
positive since A>0, B>0. 4>0. B<O for all z=Z. In addition, since <0 for
2> 2% the other expression 2p%—(p—1)p will be nonnegative if and only if

% | %, 5 . |
= 22— foraii z>:z° A8
G-0"[p—1|=5 i “8

This means that minus the percentage change in the derivative of (p—1) does
not exceed twice the absolute percentage change in (p—1). By combining
conditions (A.6), (A.7), and (A.8) we then have sufficient conditions for LA4
to be strictly positive for ali z>z° (thereby also representing sufficient
conditions for y to be single peaked for any ae A).

C. Effects of more competent decisions

Next consider the effects of agents becoming more competent {or self-
confident; see footnote 7) decision makers by using more costly information
processing equipment and procedures. As before let action a be an arbitrary
element of A. Since pX rises strictly with z over [Z, c0) there exists an inverse
function, denoted p; !, such that pX=pX(z) implies z=p, !(p¥) for all
pi €[, ). Thus define 52°%(p])=pd®p, ‘(o)) =pX®(2). The properties of pX®
discussed in section 2 imply it equals p¥ as pX rises to the threshold at which
decision errors begin for action a, denoted p? =p¥(29), such that p8(z) <0 for
z2>292> 2% (where z° of Theorem 2 equals the infimum of all 2 for all ae A).
Hence, the properties of pZ imply it starts falling below pX as z increases
beyond 2z0. The difference, pX—pX%(p)), identically equals zero for
pXe[1,p?], after which this difference grows steadily larger as pf rises
beyond p?.

Now suppose that higher C, both delays the error threshold p? and
reduces the rate of decision errors beyond p?, thereby slowing the drop in
PXB below pX as the latter rises beyond p?. Thus, p? is a strictly increasing
function of C,, denoted p%(C,). To capture the second effect for p} beyond
p2, let h,=p*—pd(C,) and write §X® as a function of both p} and C,,

denoted ﬁfn(ﬂf, Cd) & ﬁ,’,“’(h, + pg(cd)s Cd) = p:m(hm Cd)'
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The function BX? measures agents’ joint reliability for each difierence /i, in
pX beyond p%(CJ), and each level of decision costs C, (which reduces the rate
of drop of pX® below p¥ for each h,>0). The latter effect means the
cross-paitial derivative of the difference pX — pI? with respect to C, and h, is
negative for h,>0; that is, 8*(p¥ — pX#)/0C,0h,<0 for h,>0. This derivative
reduces to — *BX®/0C,oh,, which in curn implies,

o1
aC, oh,

>0 forall h,>0 and a€eA. (A9)

The proof of single peakedness in part B also implies that for each given
C,, B*® reaches a maximum for some finite h*% (C,)>0. The objective is to
show that positive marginal benefiis from using information to select actions
in A will continue further intc the ID-zone as they become more competent
at responding to information due to higher decision costs C,. This requires
showing that dh*/dC, is positive for all ae A. To do so, consider the first and
second order maximum conditions for h¥, which imply

XB(p %
Obs (h‘;’(lC,,), C‘)EO forall C, and aeA and (A.10)
aZﬂXB
—az‘—'z-—<0 at h*(C, forall C, and aeA. (A.11)

Thus, solving (A.10) implicitly for dh¥/dC, and recalling (A.9) and (A.11)
implies dh*/dC,=(—0*pX®/6C,0h,)/(6*BXE/0h*) >0 for all ae A, which is the
desired result.

D. Proof of Theorem I for pXP

If seS¥ occurs, agents can end up choosing action a either by messages
X* ‘correctly’ signaling S* and agents ‘correctly’ responding to X¥ by
selecting B(x) such that ae B(x); or by messages X —X¥ occurring instead
and agents still responding to X —X* by choosing B(x) such that ae B(x).
Thus, p(aeB(x)|S¥)=rX8=rXr8+(i—rf)wk. Similarly, if seS--5% occurs
agents may also select action a if messages X? stili arise and agents respond
to them by selecting B(x) such that ae B(x); or if messages X — X arise and
agents still respond to them by choosing B(x) such that aeB(x). Thus
plae B(x)|S—S¥) =wXB=wXr8 +(1 —wX)wb. Next divide the formula for w)®
into the preceding formula for r¥8, and rearrange terms to obtain,

I
wiP Wi (rd —wh)+w)

(A.12)
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Formula (1) of the text follows immediate by dividing both the numerator
and denominator of (A.12; by w?.

E. Notation changes to compare with information theory

In order to reduce the complexity of the remaining analysis, certain
previous definitions and notation are changed. Doing so will also make more
explicit the conmection to basic concepts of information theory and
cybernetics.

For each se§, let A; denote the set of all actions in 4 with maximal utility
if selected when s occurs. That is, 4,={a’e A|U(a’,s)2 U(a,s) for all ae A},
where U(-) denotes the agent’s utility function. Next partition S into subsets
whose eleraents produce the same A, sets, and assume (for analytic conve-
nience) that the resulting partition is countable (so that the subsets of the
partition can be indexed with i=(1,2,...) denoted S;). We then have
S;={s,s’€S|A,= A}, S;nS;=¢ for all i#j, and the union over S, equals §.
Note also that since A4, is the same for all seS;, then it can be correspond-
ingly denoted A; for each i. Finally, let X;c X denote the subset of messages
for which A; contains all those actions that maximize expected utility given
x€X; (that is, X;={xe X | B*x)=4,}).

The sets S;,, X; and A; are now interpreted as individual ‘events’
corresponding to particular types of: states occurring, messages being
observed, and actions being selected (i.e., state-events, information-events,
and decision-events). We can then apply the concepts of informaticn theory.
where an agent’s decisions in response to observed messages are interpreted
as the outputs of a communication channel. Information events X; represent
inputs to the channei and decision events A, represent outputs of the channel
(where a ¢ subscript is used to distinguish outputs from inputs, which are
denoted with a subscript “’).

Such a channel between information and decision events X; and 4; will
ereafter be called a ‘decision channel’. A perfect decision channel (one that
Iways outputs the optimal decision event A, for each message input event

X;) would perfectly correlate each input X; with the same indexed output A,.
That is, the following degenerate conditional output prsbabilities would
result.

p(4;|X)=1 forall i, (A.13a)
p(4;|X)=0 whenever j#i. (A.13b)

We can then define the probabilities of ‘rightly’ instead of ‘wrongly’
outputing decisions from received input messages (analogous to the chances

of rightly or wrongly responding to observed messages in the main text). Let
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W?'—'P(Aj‘ Yc’z Xi\‘=P(AjlYCX—X,')- (A.13d)

&%

A finite capacity decision channel can only imperfectly correlate inputs with
their corresponding optimal output responses; so that rf <1 and w}>0.

We can now think of reliability concepts of the main text in terms of
Shannan’s negative entropy measure of a channel’s capacity to transmit
informatior about which inputs have been received. The amount of infor-
mation or uncertainty about which inputs may be potentially received equals,

H(X)= -} p(X)) In p(X)). (A19)

The amount of uncertainty about which input X; was received, given the
decision channel outputted A; (see Shannon and Weaver (1963, hereafter
denoted by SW; page 52)], equals

HA(X)=—ZZP(XBA]’)lnp(XiIAj)' (A.15)
ij

By using Bayes rule to reverse the conditional probabilities p(X;|4;) in
(A.15), it is easily shown that an imperfect agent with finite reliability
pi=r}/wi<o implies H (X) is positive (meaning its output decisions
imperfectly reveal whether input messages have been received for which
outputs are optimal choices). That is,

pi<oo forsome A; implies H,(X)>0. (A.16a)

On the other hand, a perfect agent with infinite reliability implies
H (X)=0; that is,

pi=c0 forall A; implies Hy(X)=0. (A.16b)

The capacity, denoted C, of an imperfect (decision) channel to transmit
information is (see SW, page 70),

C=max (H(X)— H(X)). (A.17a)

Finally, let the variable z now index changes in the amount of information

agents might try to interpret as input. A simple way to accomplish this is to
set z equal to H(X). That is, let

z=H(X), where Z=mi3z=0. (A.17b)
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F. Finite channe! capacity implies a finite decision error threshold exists

One of the fundamental theorems of information theory (see SW, Thecrem
11 on page 71) is that if the amount of information received as input does
not exceed an imperfect channel’s finite capacity C (so that H(X)<C), then
there always exists a way to transmit received messages so that H ,(X) comes
arbitrarily close to zero (see also fig. 9 of SW, page 71).1° Since H(X) =0
corresponds to pf=o0 for all 4;, and since z=H(X) by (A.17b), then the
theorem implies there exists an interval [Z,z°]=(0,C) such that p} can be
made arbitrarily large for all 4;. Thus, the interval (0,7") can be interpreted
as the perfect decision or PD-zone discussed in the main text. As z rises
beyond z°=C, Theorem 11 of SW implies H,(X)>0, which in turn implies
pj<oo for some A;. Hence, the interval (z° 00)=(C, o) corresponds to the
imperfect decision on ID-zone discussed in the main text.

G. Measuring information complexity with H(X)

H(X) is a measure of the number and likelihood of potential messages
from an information source (see SW, pages 36—42). H(X) thus also measures
the complexity of an information source. As H(X) increases, agents must try
and interpret ever increasing numbers of perhaps subily differentiated
messages, most or all of which arise with negligible probability. We can also
define,

H(S)= —;p(sg) In p(Sy), (A.18a)

as a measure of the complexity of the environment encountered by agents.
Larger H(S) corresponds to larger numbers of siaie-evenis S; for which
different action events 4, must occur in order to always select a best action
for all potential environmental states (recall that S. contains all those states
for which actions from A, are optimal). As H(S) rises, ever increasing number
of events S, will potentially occur, which are distinguishable from each other
only according to more complex and subtle factors.

It is easy to show in general that H(X)+ H(S)=H(S)+ Hy(X) (see SW,
page 52), which implies

H(X)2 H(S)+ H«(X), (A.18b)

10The original interpretive discussion by Shannan focused on an imperfect communication
channel rather than an imperfect decision channel as kere discussed. However, the method of
proof of Theorem 11 of SW (1963) is independent of any physical property about the actual
process of transmission through a channel, no matter how the latter might be interpreted (it is a
nonconstructive, ‘existence’ proof derived only using formal probability relationships indepen-
dent of any physical process that might give rise to them). It can thus be applied to widely
differing cases (such as electronic signals, human language, the genetic code embodied in DNA
molecules, and so on), including both sending messages to an ageat as well as agents responding
to received messages.
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since Hy(S)=0 always holds. Similar to the above discussion for H,(X) in
part F, it can be shown that p¥— oo for all A; implies Hg(X)—0. Hence, from
(A.18b) we have.

p¥—o0 forall A; implies H(X)—H*2H(S). (A.19)

Implication (A.19) means that in order to become perfectly reliable, an
information source must thereby also become at least as complex and subtly
differentiated as the environmental events S, which it attempts to predict. Thus,
a complex environment may place severe demands on agents’ ability to
interpret information that reliably (and in the limit perfectly) predicts all the
environmental events S, that are relevant to determining their best choices.

This result also relates to the ‘law of requisite variety’ (see Ashby 1963,
pages 206-218). In the present context, it means that an information source
must produce messages with at least as much ‘variety’ as the events S, in
order for agents potentially to be able to reduce the difference between their
actually selected and optimal actions down to zero; thereby enabling agents
to vary their decisions so as to continually maintain this difference equal to
zero (that is, to vary their decisions so as to continually make optimal
responses to varying environmental conditions).

H. Joint reliability and marginal benefits to using information

The relationship between joint reliability ratics and the marginal benefit
from using more reliable information is now discussed using the above
information theory concepts. Doing so will simplify the formal anatvsis, while
still focusing on the essential relationships involved.

To do so, let X--X;=Y,,,;X, (meaning message events for which other
decision events besides A; are optimal given those messages have occurred)
and S—S5;=),,,S; (meaning state events for which other action events
besides A, are optimal if the events S—S; were perfectly known to agents).
Then denote the conditional information and decision probabilities of the
main text as (also recalling they depend on the information index z, such as
z=H(X) discussed above in part G).

rf(@)=p(4;|YeX) and wl(z)=p(4,|Y<X-X), (A.20a)
ri(@=p(X;|Y<S) and wi(z)=p(4;| Y=S~-S§), (A.20b)
ri%(2)=p(4;|Y=S) and w}B(z)=p(A4,|Y<=5-8), (A.20¢c)
piP=rl®/wi®, pl =rf W, pf =P /W] (A.20d)
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By similar reasoning to th t of part D above, we can aiso express the joint
probab;lities r¥B(z) and wX®(z )as,
2y =r}2)rl (D) + wi)(1-r¥(2)), (A21a)
wlB(2) =rP2)w¥(2) + wi(2)(1 — w(2)). (A.21b)

Hence the ratio (A.21a)/(A.21b) can be transformed into an amalogous
formula to eq. (1) of the main text.

Let U(A;,S)) denote the utility to an agen seiecting an action within
A; when ev*nt S; occurs. Recalling that 4, coﬁtains ali the best aciions for
event S;, we then have

orall i whenever j#i. (A.22)

Next define the expected utility!! if an action from 4 — 4; is selected when

Py ey P ey

event t)‘ UL ULD,

p(A;|S)
EUA-4|S)=Y ——10_.y4,|5),  where (A.232)

j¢ii"\ﬂ=ni|ﬂi
iy A loy _© _s. lon A ALY
PlA— A8 2, PlAj| ;) {(A.200)

i
o Twrs 4 a4 ey 9 _ o L.t b a4 M __aflat__
SINCE EU(A—A4; |0y Cquals a convex Comoinauon oOf e 3¢t 01 uulinies
FIL A C) frae $L: than it aluirnen linsa haturnnn tha mavimmitm and minimnm
UiAajp oy 101 J7i, Ulth it &:wWays 1iCS oCiwdlii Ul maxinmum anG minimun
values of these utilities. Thus, by (A.22) we have,

U(A;,S,-)>EU(S S,|A,) for all . (A.Zd)

Next let EU(A|X) represent the expected utility from selecting acticiis
within 4 in response to observed messages in X. Standard analysis then
impiies

EUAIX)=YY p(A..
IR ‘T."_"r\

" The analysis developed here (and in the main text) does not depend on assuming expected
uuhty. but can be generahzed to allow for Fecent non-expected unhty thcones o_f Machina,
Lnew. Fiskburn, and others Lm Machina uvo.)) j This lgcllclulluuuu is ucvvacu in Heiner

(1985a).
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=Z_ p(S) {P(Aa I S)U(A, S)+ j;i P(AJ I SHU (Aj | Si)}

=205) {p(Ails;)U(A,, s‘)+p(A—A.-lsoEU<A—Aiiso}.

Since 1—p(4; | S)=p(A—A4; | S)=Y . P4; | S), and since S;=S-S; then
definition (A.20c) implies

EU(A| X)=Y p(S){rI*(2)U(A.S)+ T w]*(IEU(A-A}] Sa)}, (A.25a)

j#i

where Y, wiB(z)=1—-rF"(z). (A.25b)

J#i

Each bracketed term { } of (A.25a) is a convex combination of U(4;,S;)
and EU(A—4;|S); where the former always exceeds the latter by (A.24).
Thus, i the relative probability weights of all mistaken decisions shift toward
the joint probabilities r¥?(z) for all A4, (corresponding to p¥X(z) rising for all
A;), then all the bracketed expressions { ; of (A.25a) will rise.'? Hence, for
any given set of probabilities of different states arising, p(S;), EU(AX) will
rise if joint reliability pX®(z) increases for all i. Similar reasoning also implies
that if joint reliability falls for all i, then EU(A|X) must eventually aiso fall
(that is, joint reliability simultaneously rising or falling for all i will produce
positive or negative ‘marginal benefits’ from raising the index z toward using
more reliable information).

120ne can also separate EU(AX) into another decomposition involving the ‘posterivi’ expected
utilities conditional on the occurrence of narticular decision events A;, denoted EU(S|A)=
Y. 0S| AMU(4,S). Tt can also be shown that each EU(S|A) is a convex combination
involving r{” and w{” such that raising p{** will increase EU(S|4,). Thus, if joint reliability rises
simultaneously for all i, then the posterior expected utilities conditional on decision events A,
will thereby also simultaneously rise for all i.
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